Monday, January 13, 2025

Prognostic enrichment versus predictive enrichment

Prognostic enrichment and predictive enrichment are both strategies used in clinical trials to select patients for inclusion. Both strategies aim to improve trial efficiency but address different aspects of clinical trial design.

Prognostic enrichment
Selects patients who are more likely to experience a disease-related event or condition. This strategy can help reduce the sample size required for event-driven trials.

Predictive enrichment
Selects patients who are more likely to benefit from a treatment or intervention based on a physiological or biological mechanism.




FDA guidance includes some detail examples of using prognostic enrichment strategies or predictive enrichment strategies. 

The differences between prognostic enrichment and predictive enrichment can be summarized as following:

Prognostic Enrichment

Predictive Enrichment

Definition

Selecting patients based on their likelihood of experiencing a specific outcome (e.g., disease progression or event) regardless of treatment.

Selecting patients based on their likelihood of responding to a specific treatment due to a biomarker or characteristic.

Goal

To increase the event rate or outcome frequency in the trial population, improving statistical power.

To identify patients who are more likely to benefit from the investigational treatment.

Focus

Focuses on the natural history of the disease or risk of an outcome.

Focuses on the interaction between the treatment and a specific patient characteristic (e.g., biomarker).

Patient Selection

Patients are selected based on prognostic factors (e.g., disease severity, biomarkers, or risk scores).

Patients are selected based on predictive factors (e.g., presence of a biomarker or genetic mutation).

Outcome

Increases the proportion of patients who experience the outcome of interest.

Increases the likelihood of observing a treatment effect in the selected population.

Example

Enrolling patients with advanced-stage cancer to ensure a higher rate of disease progression.

Enrolling severe patients who may be more likely to develop clinical worsening events

Enrolling only patients with a specific genetic mutation (genetic biomarker) that is targeted by the therapy.

Enrolling only patients in a specific etiology sub-group who are expected to be more responsive to the investigational treatment

Impact on Trial

Reduces sample size and trial duration by enriching for patients with a higher event rate.

Improves treatment effect size by focusing on patients who are more likely to respond.

Statistical Benefit

Increases statistical power by reducing variability in the control group.

Increases effect size by reducing heterogeneity in treatment response.

Risk

May exclude patients who could still benefit from the treatment.

May limit generalizability of trial results to a broader population.

Common Use Cases

Trials where the primary endpoint is time-to-event (e.g., survival, disease progression).

Trials where the treatment mechanism is targeted (e.g., precision medicine, biomarker-driven therapies).


Further Reading: 

No comments: